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Abstract-An analytical solution is presented for the problem of torsion of a prismatical bar of
square cross-section of a micropolar (Cosserat) elastic solid. Warp of the cross-sections is found to
differ from the warp in a classicalIy elastic solid. Contrary to the classical case, a non-zero shear
strain is predicted to occur at the edge of the bar. Novel experimental modalities are suggested on
the basis of this analytical solution.

1. INTRODUCTION

This study is motivated in part by the desire to develop improved experimental modalities
for the study of Cosserat elastic media. Previous experiments intended to obtain evidence of
Cosserat elastic behavior, have utilized the size effects predicted to occur in inhomogeneous
deformation (e.g. torsion and bending) of Cosserat solids. Such experiments have disclosed
classical behavior[l-4] or Cosserat elastic behavior[4-7] depending on the material. In
its recent forms, the method of size effects is capable of determining all six elastic constants
of an isotropic Cosserat solid[7]. Nevertheless, the method is tedious since specimens must
be progressively cut to smaller sizes, or an ensemble of specimens of identical properties
and different size must be obtained. In addition, the range of specimen size must include
sizes not greatly in excess of the size of the microstructure. If the structural element size
is small, the preparation of these specimens presents an additional challenge to the
experimentalist.

In this article, the problem of torsion of a prism of square cross-section, of a linear
isotropic Cosserat solid, is solved analytically. Experimental modalities for Cosserat solids
are developed on the basis of this solution.

2. BASIC EQUATIONS

Consider a linear micropolar (i.e. Cosserat) elastic medium which is macroscopically
homogeneous and iSotropic. Assume that body forces and body couples vanish. The basic
equations in the static theory of homogeneous and isotropic micropolar elastic solids are
as follows[8]. In this section, the Einstein summation convention for summation over
repeated indices is used. A comma followed by a subscript denotes partial differentiation
with respect to the corresponding Cartesian coordinate.

The equilibrium equations are

tjl•1 =0

mjl.j + ell<ltl<1 =0

(I)

(2)

in which t jl is the Cauchy stress, mjl is the couple stress, and ell<1 is the permutation symbol.
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Fig. I. Differential element at the corner of a cross-section of a twisted bar.

The constitutive equations are

tij = Aeu(jij + (J.l + K)eij + J.Lejj

m·· = rxA..L L(j .. + (lA.. . . + 'lJA.. ..
I) 'P... I) 'Pl.) I 'P).1

(3)

(4)

in which eij is the micropolar strain, defined below, cPi is the microrotation vector, and
A, J.L, K, rx, {l and 'Yare the six independent elastic constants of an isotropic micropolar
(Cosserat) solid.

The strain-displacement relations are

(5)

in which Uj is the displacement vector, eij = (Ui.j + uj.i)/2 is the conventional strain, and r'"
is the macrorotation vector rill = e"""u".,/2. The surface tractions and surface couples acting
on a bounding surface S of a body are given by

where nj is the unit vector of the outward normal to S at the point.

3. CORNER DIFFERENTIAL ELEMENT

To develop insight into the structure of the solution to the torsion problem, consider
a differential element at the corner of a cross-section, as shown in Fig. 1. In a classically
elastic solid, one may argue on the basis of the stress boundary conditions on the lateral
surface, and the symmetry of the stress tensor, that the shear stress vanishes at the
corner[9]. In a Cosserat solid, the stress tensor can be asymmetric, as seen in the expanded
form of equilibrium eqn (2)

For the corner element

(6)

my. = 0, and myy = 0
a

on y = ±"2

txz = 0, mx • = 0, and mxx = 0 on
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Fig. 2. Torsion of a prism of rectangular cross-section.
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But am"JJax, amy,,/ay and amu/az are not equal to zero in general, so in eqn (6) t%y ¢ O.
The corner element, therefore, can experience shear stress, in contrast to the classical case.

From the constitutive eqns (3), ty%= (2J.1. + K)e%y + K(r" - tP,,) in which e%y and r" are
classical shear strain and rotation (macrorotation), respectively. For the corner element

Since the macrorotation and microrotation are different in general

K
e%y = --2--(r" - tP,,)·

J.I.+K

Therefore, the corner element experiences shear strain, unlike the classical case.

(7)

4. TORSION OF PRISM OF RECTANGULAR CROSS-SECTION

Consider a prismatic bar of rectangular cross-section subject to equal and opposite
twisting moments at the ends, as in Fig. 2. Let one side of the cross-section, of length a,
be parallel to the x-axis and that of length b be parallel to the y-axis. It will be supposed
that b ~ a and that the z-axis passes through the center of the cross-section.

4.1. Governing equations
Boundary value problems involving rectangular cross-sections are most conveniently

treated in Cartesian coordinates, (x, y, z). The governing equations for a micropolar solid
are therefore presented in expanded form, in Cartesian coordinates.

Equilibrium

(8a)

(8b)

Constitutive

(9a)
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mxy a</>x/ay a</>y/ax
mX% a</>x/az a</>%/ax
myx =p a</>y/ax

+y
a</>x/ay

my% a</>y/az a</>%/ay

m%" a</>%/ax a</>x/az
m%y a</>%/ay a</>y/az

Strain-displacement

r'''1 r
O

••

laX

1Eyy = aUy/ay
E:: au%/az

Exy auy/ax -</>%
Ex: au%/ax </>y
Eyx

=
aux/ay

+ </>%
Ey% au%/ay -</>x
Ez;x aux/az -</>y
E%y aUy/az </>"

(9b)

(9c)

(9d)

(lOa)

(lOb)

Equilibrium equations in terms of displacements. Substitution of constitutive equations
into equilibrium equations yields equilibrium equations in terms of displacement. They are

(a + P + Y)</>",xx + (a + PX</>y,xy + </>%.X%) + Y(</>x,yy + </>x,::)

+ K[(U%,y - uy) - 2</>x] = 0 (lId)

(a + P + Y)</>y,yy + (a + PX</>x,Xy + </>%,y%) + Y(</>y,xx + rPy,::)

+ K[(Ux,% - u%,x) - 2rPy] = 0 (lIe)

(a + P + Y)rP%,%% + (a + PXrPx,x: + rPy,y%) + Y(rP%,XX + rP%,yy)

+ K[(Up - Ux) - 2rP%] = 0, (11f)
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4.2. Compatibility conditions

4.3. Stress boundary conditions
On the boundary surface S of a body

489

(12a)

(12b)

(12c)

(12d)

(12e)

(12f)

(12g)

(12h)

(12i)

(13a)

(13b)

S. SOLUTION

5.1. Determination of field of displacement and microrotation
Iesan[10, 11] has proven the existence of solution for the general torsion problem and

the uniqueness theorem[8] ensures the uniqueness of the solution once it is found.
A semi-inverse method will be used to solve the problem. Since the cross-sections are

noncircular, they will experience warp u. when the bar is twisted. The solution is constructed
by superposition from the following fields of displacement and microrotatioD, which shall
be denoted by {I} and {II}.

Field {I}:

SAS 23:4-D

ux = -9yz (14a)
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Field C{I1}:

H. C. PARK and R. S. LAKES

00

Uz = 6xy - 0 L B"sinh(k,.y)sin(k"x)
,,=0

00

cP", :::;:: -6 L tB"k"cosh(k"y)sin(k"x)
,,=0

00

cPy= -Oy + (1 L tB"k.sinh(k,.y)cos(k.x)
.=0

cPz = Oz.

U", = -OCyz

Uy = OCxz

00

Uz = OCxy - oc L A.sinh(p"y)sin(k"x)
,,=0

00

cP", = -OC L D.sinh(p"y)sin(k.x)
,,=0

00

cPy = -OCy - 6C L F.sinh(p"y)cos(k.x)
.=0

cPz = OCz.

(14b)

(14c)

(l4d)

(14e)

(14f)

(1 Sa)

(1Sb)

(lSc)

(ISd)

(ISe)

(1 Sf)

Here (J is a twist angle per unit length, k" = (2n + 1)1t10, B" = 8( -1)·lok; cosh (k.b/2), and
A", D., p.. and C are to be determined. Field {I} may be recognized as identical to the
solution in classical elasticity[9], with the microrotations cP set equal to the classical
macrorotations.

Consider now the superposition {I} + C{I1}. Substituting this field into the equilibrium
equations, one obtains

00

L {(Jl + K)[A..k; - A"p;] - K[F..k" - D"p.]} sinh (p,.y) sin (k.x) =0 (16a)
,,=0

00

L {(ex + {J + y)D..k; - (ex + {J)F..k"p.. - yD"p;
,,-0

- KA"p" + 2D..} cosh (p,.ylsin (k.x) = 0 (16b)

00

L {(ex + {J + y)F"p; - (<< + (J)D..k"p" - yF"k;
,,-0

+ KA..k" - 2F,,} sinh (p,.y) cos (k"x) = 0 (l6c)

and eqns (l1a), (lIb) and (11f) are identically satisfied.
From eqn (16a), we obtain

(Jl + K)[A"k; + A"p;] + K[D"p" - F"k.J = 0 (17a)
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or

where N is the coupling number[12]

Upon rearranging and combining eqns (16b) and (16c) we obtain

Upon using eqn (17b) we obtain
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(17b)

(18)

where lb is a characteristic length, originally encountered in the context of bending
problems[3]

[2 - y
b - 2(2Jl + K)'

For boundary conditions we prescribe first that the lateral surfaces, x = ±a12 and
y = ±b12, be free of all tractions and couples

We apply eqns (13a) and (13b) and obtain

a
on x = +--2

b
on y = +-2

a
on x = +--2

(19a)

(19b)

(19c)

(19d)

It is prescribed on the end surfaces z = 0 and L that the distribution of stress and couple
stress be equipollent to a twisting moment M, and zero net force

1t(II)zdA =0 (20a)

(20b)
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From eqns (l9a)-(19d) and the constitutive equations we obtain

Since

cos (kn~) = 0,

is always satisfied.

Upon expanding the first term of eqn (21) into a Fourier sine series in [ -a, aJ

00 { 4( - l)n ( b)}
n~o (21-l + K) ak; - [(I-l + K)AnPn - KDnJ cosh Pn 2. sin (knx) = O.

Since this has to hold for all x

thus

A
n
=_K_Dn +21-l+ K 4(-1t

I-l + K Pn I-l + K ( b)
ak2Pn cosh Pn 2.

or

An = 2N2 Dn + (l _ N 2 ) 8( -It .

Pn Z (b)aknPn cosh Pn 2.

Now

m"",IX=4/Z = f {IXFnPn - (IX + P+ Y)Dnkn}COS(kn~)sinh(PnY)
n=O

since

(22)

is always satisfied

m"I,=b/2 = L {(IX + P+ y)FnPn -IXD..kn}COSh(Pn~)COS(knX) - (P + y) = O. (23)
n=O
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Upon transforming the last term of eqn (23) to a Fourier cosine series in [':"b,b]

Since this has to hold for aU x

thus

or

F" =(1 - ",)D;~" + '" 4(-lr b

ak"p" cosh (P"l)
where'" is the polar ratio[3], '" = (P + y)!(a. + P+ y).
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(24)

are automatically satisfied, since these components of stress vanish everywhere.
Now, we have determined aU the coefficients except D" and C so far. There are two

boundary conditions whic~ remain to be satisfied

IX> (-lr 2'
m,x,I,x"./2 = -(fJ + y) L -2-Bllkll smh(kllY)

,,-0
IX>

- C L (-l)"(yFl k" + pD.pJsinh(PIIY) = 0 (25a)
11=0

m,.xI,=b/2 = -,,~o {(P + Y)~Bllk:sinh(k,,~)

+ C(yD.p1I + PFllkll)sinh (Plln} sin (kaX) = O. (25b)

At this point, reconsider field {I} alone in which the terms containing C are absent
which is a special case of the above {I} + C{II}. Field {I} may be considered to be an
exact analytical solution of a torsion-like problem in which couple stresses. eqns (25a) and
(25b), are applied to the lateral surfaces. Solutions of this type (sec also Ref. [13]) are not
particularly useful to the experimentalist owing to the difficulty ofapplying such a specified
distribution of couple stresses. Nevertheless, observe that the only way the classical warp
can occur in a Cosserat prism is for such a distribution to be applied. In the absence of
such tractions. the warp, hence the strain distribution must differ from the classical case,
as indicated in Section 3. In the classical limit p.... 0, y .... 0, the distributions, eqns (25a)
and (25b), vanish, as expected.
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In eqn (25b), by requiring each term in curly brackets to vanish, we obtain

(26)

Upon substituting eqn (24) into eqn (26) we obtain

I~ B"k; . h (k b) C [ ( I~ 1) ( ,/, k;] . h ( b)
2/~ -2- SIO "2 + D" p" + 2/~ - 1 -.,,) p" sm P"2

(
F )4( -l)"C (b)

+ '" 2~~ - 1 ap" tanh p" 2 = 0 (27)

where It is the torsional characteristic length[3], I~ = (P + y)j(2J.l + K). Substituting B" and
solving for D", we obtain

Now boundary condition (25b) is satisfied, condition (25a) remains to be satisfied, and the
constant C remains to be determined. Since the two summations in eqn (25a) represent
functions which ditTm- in their y dependence, choice of C is insufficient to make m", vanish
everywhere on the lateral boundary, although m", can be made small by a proper choice
of C. Field {I} + C{II} is used as follows in a superposition approach.

This approach is based on a restriction of the rectangular cross-section to be square,
so that the problem is now symmetrical under 90° rotations. For a square cross-section,
a field of displacement and microrotation is an equally valid solution following a 90°
rotation. Figure 3 summarizes the superposition of such rotated fields to generate the field
{I} + C{II} + C{IIRoT} in which {IIRoT} refers to field {II} (eqns (15» rotated by 90°.

The expanded form ofthe proposed solution, field {I} + C{II} + C{IIROT }, in Cartesian
coordinates is

u" = - O(l + 2C)yz

u, = O(1 + 2C)xz

00 00

u. :=: Oxy - 0 L B"sinh(k"y)sin(k,.x) - OC L A"sinh(pnY)sin(k"x)
8-0 "-0

00

+ OC L A" sin (knY) sinh (p"x)
"zO

00 00

rj>,,:=: -OCx - 0 L !B"k.cosh(knY)sin(k"x) - OC L D"cosh(pnY)sin(k"x)
"-0 ft-l

00

+ OC L F"cos(k"y)sinh(p"x)
n=O

(29a)

(29b)

(29c)

(29d)
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field {I}

field {I} ROT

(field) {I} + C { n}

~ (±) ~ e btlm.,

[{ I +I ROT} +C{ II +II ROT }) - {IROT } = {1}+C{II+IIROT }

bB 8 ~ e CBm., mlY

Fig. 3. Superposition of displacement-microrotation fields.

«J

(j), = -8(1 + C)y + (J L tB"k"sinh(k"y)cos(k"x)
,,-0

«J «J

+ (JC L F"sinh(p"y)cos(k"x) - (JC L D"sin(k"y)cosh(p"x) (2ge)
,,-0 ,,-0

(j)z = (J(1 + 2C)z (29f)

in which the angle of twist per unit length is now

(J' = {}(1 + 2C). (30)

5.2. Approximate solution
One coefficient C remains to be determined. The value of C is determined on the basis

of the following considerations. First, the displacement and microrotation field (29) must
converge to the classical solution as y -+ 0 or K -+ O. Second, the residual couple stress
tractions on the lateral surface must be minimized. For field (29) these tractions are

«J «J

+ L (-I)"tanh(k"a/2)sin(k"y)/ak" - L y,yCsinh(p"y)/ap.cosh(p..a/2).-0 .-0
«J

+ L [tanh (k.a/2)/ak" + y,fJCtanh(p"a!2)/apJ.-0
x [fJp; + "1(1 - y,)k;] sinh (p,.y)/sinh (P. a/2)[yp; + fJ(1-l/f)k;]} (31)
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mY"IY"'D/2 = 40(fJ + y){ - f l/tyC sinh (p"y)/ap" cosh (p" a/2)
,,=0

00

+ L [tanh (k"a/2)/ak" + l/t{JC tanh (p"a/2)/ap"J
,,=0

x [{Jp: + y(1 - l/t)k:J sinh (p"y)/[yp: + {J(1 - l/t)kn sinh (p"aj2)}.
(32)

Field (29), with an appropriate choice of C, represents a very good approximation to
the solution of the problem of torsion of a square Cosserat prism, with zero traction upon
the lateral surfaces. Details concerning the choice of C and error analysis are given in the
Appendix.

5.3. Exact solution 00

An exact solution may be constructed by a superposition of fields {I} + L CI/{III/}
1/"'1

in which the coefficients C: in each constituent field {II} are chosen so that the residual
tractions m"y, my);' on the lateral surface are reduced as q increases. The approximation in
Section 5.2 is, however, sufficiently accurate that we shall not pursue this further at present.

5.4. Determination of torsional rigidity
The torsional rigidity J is defined in terms of the applied twisting moment M\;

J = Mlz/O'. The twisting moment is obtained from an integration of surface tractions upon
the end

(33)

By substituting eqns (9b), (9c), (lOa), (lOb) and (29a)-(29f) into eqn (33) and integrating,
we obtain

{
04 co 32 (a) (J) 8

8(2p. + pc) (1 + 2C) 12 - ,,~oak; tanh k"2 + ,,~ok: + (1 + 2C)I~a2

[

00 2( -1)"aA" (a) 00 ,,( 1 1).. ( a)+ C L cosh p"2 - L 4( - 1) A" k2 +"2 smh P"2
,,=0 PIt "=0" p"

thus

(34)
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We obtain for the rigidity

in which we have incorporated
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(35)

and. the micropolar shear modulus G is given by (2J.l + Ie) = 2G. The torsional rigidity for
classical elasticity theory is[9]

(36)

One common feature of solutions of boundary-value problems in micropolar elasticity
theory is that they predict a stiffening effect which depends on the size of a specimen of
material. This stiffening effect is predicted in the bending of plates[3] as well as beams[14]
and in the torsion of rods[3]. The predicted stiffening is manifested in part in the term
containing a2 in eqn (35). Such terms also appear in the simpler exact analytical solutions
for Cosserat solids presented in Refs [3,14]. The stiffening effect becomes noticeable if the
specimen cross-section is ten times the characteristic length, and can become large as the
specimen cross-section approaches the characteristic length. Neither stiffening nor size
effects are predicted in tension.

Eringen[8] uses the principle of non-negative internal energy to impose certain
restrictions on the micropolar elastic moduli. They are

o~ lA. + 2J.l + Ie,

o~ 3a + P+ y,

o~ 2J.l + Ie,

-y ~ P~ y, o~y.
(37)

After some manipulation, one obtains the corresponding range of the material parameters:
o~ N ~ 1, II ~ 0, Ib ~ 0, 0 ~ '" ~ 3/2, -1 ~ Ply ~ 1, -1 ~ v' ~ 0.5, where v' is Poisson's
ratio of micropolar elasticity[14], v' = ).1(2), + 2J.l + Ie).

Denoting the ratio of micropolar to classically elastic torsional rigidity, J'p by n in
eqns (35) and (36) it is observed that n increases with N. When N becomes zero, the
classical result n = 1 is obtained. Also, n increases with II and as II becomes zero, n
becomes unity. Therefore, we obtain the classical result in the limit, as required by the fact
that classical elasticity is a special case of micropolar elasticity. Figures 4-7 are graphical
representations of the torsional rigidity. Figures 4 and 5 display the influence of the
material constants upon the torsional rigidity ratio, n Figure 6 shows the influence of N
upon the rigidity in J'la2-a2 curves with '" = 1.5, II =0.2 mm and Ply =0.5. Figure 7
shows the influence of II upon the rigidity in J'la2-a2 curves with'" = 1.5, Ply = 0.5 and
N = 0.9. These results are similar to those obtained by other authors[3,14] in other
geometries in that a stiffening effect is predicted. They are similar to those for torsion of
a cylindrical bar[3] in that stiffening effects are most noticeable for large II and large N,
and that '" has little effect when II « a. The present results differ from Ref. [3] in that for
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4

o .1 .2 .3 .4 .5

lt /o

Fig. 4. Rigidity ratio n vs characteristic length: dependence on N for tit = 1.5, PlY = 0.5.

o .1 .2 .3 .4 .5

1tlo

Fig. 5. Rigidity ratio n vs characteristic length: dependence on tit for N = 0.9, Ply = 0.5.

30

0.1

2010

N -1 '"

0.7~~
0.5""",,/~ •

d'~.o
.
~....:.~~.,.
~ CLASSICAL

.&

.6

.5

.4

Z
-....

.3N

~
"'?

.2

.1

~

0.0

0 2 1mm2)

Fig. 6. Rigidity divided by diameter squared vs diameter squared. dependence on N, for I, =0.2 mm,
tit = 1.5, Ply = 0.5.
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.5

.4

z
:- .3

o.........,
.2

.1

0.0

0
2 (mm 2

)

Fig. 7. Rigidity divided by diameter squared vs diameter squared, dependence on I, for N = 0.9,
'" = 1.5, Ply = 0.5.

small specimens approaching II in thickness, stiffening effects can become large even for
small N, regardless of the value of t/I, whereas in Ref. [3] stiffening effects become large
only for N ~ I or for t/I very different from 1.5. For larger specimens of thickness about
16 times the torsional characteristic length, the square cross-section prism is stiffened by
about 20% while the circular cylindrical rod[3] is stiffened by about 10%. This difference
can be attributed to the fact that strain gradients are greater in the square cross-section
case. These differences in the solutions for different geometries may be useful in the
determination and consistency tests of the micropolar elastic constants.

6. STRAIN DIS.TRIBUTION ACROSS THE LATERAL SURFACE

The tensorial shear strain, ezy = !(uz•y + uy,z)' obtained from the displacement field
(29), upon the boundary x = a/2, is as follows:

(38)

where k" = (2n + l)1t/a, p" = [k~ + (N/lb)2Jl/2 and

A" = 8( -lr(l - N
2

)

ak~p"coSh(P"~)

!t. 4( -1)"N\ h (k ~) + (JL _1) 8( -lr",C h ( ~)
12 k an "2 212 tan p" 2
b " b P"

Figures 8 and 9 show the influence of material parameters upon the shear strain distribution
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2

.,

0.0

<g' -::--l~:-:C-~t-""~~·
, .2 L,

>
N

IV

y(mm)

Fig. 8. Normalized shear strain along lateral surface x = al2 vs position: dependence on N for
'" = 1.5, Ply = 0.5, I, = 0.2 mm.

.3

.1

0.0

CLASSICAL lt/O =0

11160

------ '/80

,C i;/~~Z~''''~;;;;l:~£::>;;:''''''''-

2

y (mm)

Fig. 9. Normalized shear strain along lateral surface x = al2 vs position: dependence on char
acteristic length divided by bar width, for'" = 1.5, Ply = 0.5.

on the boundary. Strains are normalized by dividing by the twist angle and width of the
cross-section. As anticipated in Section 3, a non-zero shear strain is predicted to occur at
the corners of the cross-section when the bar is made of a micropolar material. Numerical
tests described in the Appendix were performed to test the validity of the approximate
solution in predicting a non-zero corner stress. On the basis of these tests it is concluded
that the predicted non-zero stress and strain are valid and are not an artifact of the
approximation scheme.

7. EXPERIMENTAL MODALITIES

The analysis presented in this article makes possible the design of new kinds of
experiments for the study of Cosserat elastic solids. Some of these experimental modalities
confer significant advantages over existing ones.

7.1. Size effects
The first approach to be considered is a method of size effects based on the torsional

rigidity of square bars obtained in Section 5.4. As in the case of rods of circular cross
section[3], predicted rigidity of slender bars of a Cosserat solid exceeds the rigidity of a
corresponding classical solid of the same shear modulus. Size effect studies in square bars
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may be used (i) in comparison with results obtained with circular cross-sections as an
internal consistency test of the Cosserat model of a material, and (ii) as a primary method
to be used for materials which cannot be easily formed in a circular cylindrical form, but
which can be readily cut; for example, a flexible polymer foam.

7.2. Strain distribution: strain at the corner
As shown in Section 6, the strain distribution across the lateral surface of a Cosserat

prism differs from that in a classically elastic prism. By measuring this strain distribution
via strain gages or by optical methods, one should be able to distinguish between classical
and Cosserat elastic materials. Since measurements upon a single specimen suffice to
demonstrate the presence of non-classical effects, this approach is simpler than the method
ofsize effects which requires an ensemble of progressively smaller specimens to be machined.
In addition, a method based on measurement of the strain distribution permits the use of
specimens very much larger than the microstructure size.

The reason for this is that a finite Cosserat characteristic length always results in a
non-zero shear strain along the edges of the twisted bar, while a classical bar exhibits zero ,
strain along the edges. If the characteristic length is small compared to the bar width, the
non-classical strain at the edge is small compared to the strain at the center of the lateral
surface, but it differs from zero. The percent difference between a zero strain and a non
zero strain is infinite, whereas in the method of size effects the percent difference between
the rigidity of two bars or rods of different sizes much larger than the characteristic length,
is small. Now practical strain-measurement techniques always have a finite gage length
and a limit to resolution, so it is not possible to measure arbitrarily small strain exactly
at the edge. Nevertheless, this method should permit the evaluation of Cosserat elastic
behavior in specimens much larger than the characteristic length.

7.3. Stress at the corner
The presence of non-classical shear stress at the corner of the cross-section may be

inferred by making a small nick or crack in the corner of a twisted bar. The crack will
open in mode III if the bar is made of a Cosserat solid, since non-zero stresses are relieved.
By contrast a similar crack in a classically elastic bar shows no tendency to open.
Experiments have been conducted on the basis of this approach, using holographic
methods[15], and in the context of lecture demonstration experiments[16]. It was found
that a small comer crack in a twisted bar of rubber[16] or of polymethyl methacrylate[15]
did not open, as expected from the classical prediction and the known classical behavior
of such homogeneous materials. By contrast, a similar corner crack in a twisted bar of low
density polymer foam[16] or of high density foam[15] was observed to open. Such a
phenomenon is consistent with the predictions presented in this article and with evidence
based on size-effect studies that these structured materials behave as Cosserat solids[7, 17].

8. CONCLUSION

The problem of torsion of a Cosserat elastic bar of square cross-section has been
solved. Size effects in the torsional rigidity are predicted to occur. Stress and strain are
predicted to be nonzero at the corners of the cross-section, in contrast to the classical case.
Experimental methods based on these predictions offer a variety of advantages over
currently available methods.
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APPENDIX: ERROR ESTIMATES

The displacement-microrotation field in eqns (29a)-(29f) represents the solution to a torsion problem in
which couple stresses given by eqns (31) and (32) are applied to the lateral surfaces. These couple stresses depend
upon the choice of the coefficient C; they can be minimized by the proper choice of C. The field in eqns (29a)
(29f) then becomes an approximate solution to the standard torsion problem in which zero traction is applied
to the lateral surfaces.

C is determined by: (i) requiring the surface tractions, eqns (31) and (32) to be minimized in a root-mean
square sense and (ii) requiring the proposed solution, eqns (29aH29f) to approach the classical solution when /(
or y approach zero in the classical limit. To achieve (i), define error measures ~ and PI:

[1
/2 11/2 J1 /2,- (ml +CU+OlaOT I )2dy (ml I )2dy

~ - XF "·.12 X'I ;x-o/2
o 0

(AI)

(A2)

The rationale is that the unwanted couple stress traction on the lateral surface (violation) in field {I} is
sufficient to maintain the warp, hence the surface strain, identical to that of a classical bar. The quantity ~ can
be considered as an estimate of the error in the deviation of the warp from classical values, in field
{I} + qII} + qII.oT}·

As a test of numerical procedures, the quantities ~ and" are calculated in two ways: by explicitly carrying
out the operations in eqns (AI) and (A2) termwise[18], and by numerically integrating as follows:

(A3)

A further test of the numerical procedures is to compare ~ and" which must be equal in view of the rotational
symmetry of a square bar.
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Results of the analysis are as follows. For a material for which N =0.9, t/I = 1.5, 1,Ia =0.04, Ply'"' 0.5
(l,ll~ =0 [2(1 + (Ply))]l/l '"' Jh the error measures based on a numerical integral [eqn (A3)] are ~ :0 0.019 and
" :0 0.022, for the optimal value of C. The corresponding quantities obtained by termwise integration [eqns (AI),
(A2)] are ~ :0 0.023 and " '"' 0.023. A plot of the residual violation of mx, '"' 0 on the boundary is shown in
Fig.IO.

An alternative error measure was also tried:

(A4)

This resulted in smaller values of the error estimate for the above hypothetical material: ~ :0 0.016 and" - 0.017,
and much smaller values than eqns (Al)-{A3) under conditions of large error. Error measures defined by (AI)
and (A2) were used to obtain values of C used to generate the graphs.

The optimum value of C which minimizes the error depends on the elastic constants in a complex way.
Nevertheless, a choice of C Jiven by C = 2SN/,/a is sufficient to ensure that ~ .;0 0.10 over a wide range of N, I,
and t/I, and for 0" Ply" 0.6.

Further numerical studies were performed to explore the effects of the error terms on the strain distribution.
In these studies, the quantity C was perturbed from its optimal value. It was observed that the boundary
condition violation m", could be made positive or negative over the entire lateral surface. The predicted strain
distribution, however, varied only slightly. Furthermore, the perturbation of C was in no case observed to cause
the comer strain to vanish or to change sign in a micropolar material. It is concluded that ~ and" are reasonable
error measures, that the error in the approximate solution is small. and that the prediction of non·zero comer
strain is valid.


